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Complex Geometry and Dirac Equation
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Complex geometry represents a fundamental ingredient in the formulation of
the Dirac equation by the Clifford algebra. The choice of appropriate complex
geometries is strictly related to the geometric interpretation of the complex
imaginary unit i 5 ! 2 1. We discuss two possibilities which appear in the
multivector algebra approach: the s 123 and s 21 complex geometries. Our formalism
provides a set of rules which allows an immediate translation between the complex
standard Dirac theory and its version within geometric algebra. The problem
concerning a double geometric interpretation for the complex imaginary unit i 5
! 2 1 is also discussed.

1. INTRODUCTION

In this paper we present a set of rules for passing back and forth

between the standard (complex) matrix-based approach to spinors in four
dimensions and the geometric algebra formalism. This ª translationº is

only partial, consistent with the fact that the Hestenes formalism (Hestenes,

1966) provides additional geometrical interpretations. In a pure translation

nothing can be predicted which is not already in the original theory. In

the new version of Dirac’ s equation some assumptions appear more natural,

some calculations more rapid, and new geometric interpretations for the
complex imaginary unit i 5 ! 2 1 appear in the translated version for

the first time.

The matrix form of spinor calculus and the vector calculus formulated by

Gibbs can be replaced by a single mathematical system, called multivector
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algebra, with which the tasks of theoretical physics can be carried out more

efficiently. The multivector algebra derives its power from the fact that both

the elements and the operations of the algebra are subject to direct geometric
interpretation (Hestenes, 1971). The geometric algebra is surely the most pow-

erful and general language available for the development of mathematical phys-

ics (Hestenes and Sobczyk, 1984; Lounesto, 1997). The central result is a

representation of the Dirac wave function which reveals a geometric structure,

hidden in the conventional formulation (Hestenes and Weingartshofer, 1991).

According to Zeni (1994), ª The projection of the Dirac equation into
the Pauli algebra eliminates redundancies, simplifying our task to solve this

equation, since in the Pauli algebra we work in an eight dimensional space

over the real numbers, while in the standard formulation we have to do with

a 32-dimensional space over the reals, the space of 4 3 4 complex matrix #(4).º

Hestenes (1967) states that ª The imaginary unit appearing in the Dirac

equation and the energy-momentum operator represents the bivector generator
of rotations in a space-like plane corresponding to the direction of the elec-

tron spin.º

We wish to clarify these statements. We agree with fact that in the Pauli

algebra (isomorphic to the even part of the space/time algebra Cl 11,3) we have

only eight real parameters in defining the Dirac spinors, but in defining the
most general operator which acts on them, how many real parameters do we

need? The imaginary unit i is identified by the bivector s 21 P Cl3,0. Is this

the only opportunity? What about the possibility to identify the complex

imaginary unit by the pseudoscalar s 123 P Cl3,0?

In formulating the Dirac equation by the Pauli algebra we can start from

the standard matrix formulation and use the ideal approach to spinors to
make a clear translation to the Clifford algebra Cl4,1 which is isomorphic to

M4(#). The following step is to reduce the formulation of the Dirac equation

to an algebra of smaller dimension, the space-time algebra, Cl1,3. Finally, we

get a projection of the Dirac equation in the Pauli algebra Cl3,0 (Zeni, 1994).

In this paper we shall follow a different approach. We give a set of rules

which enables us to immediately write the Dirac equation by using the
Pauli algebra. The fundamental ingredients of this translation are the direct

identification of the complex imaginary unit i 5 ! 2 1 by elements of the

Pauli algebra and the introduction of the concept of ª complexº geometry

(RembielinÂski, 1978; Horwitz and Biedenharn, 1984).

The standard (complex) 4-dimensional spinor

C 5 1
c 1

c 2

c 3

c 4 2 [ 1
w 1 1 i h 1

w 2 1 i h 2

w 3 1 i h 3

w 4 1 i h 4 2 , w m, h m P 5, m 5 1, 2, 3, 4 (1)
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is characterized by eight real parameters, which can be settled in the following

eight-dimensional Clifford algebras

Cl3,0 [ , M2(#)], Cl1,2 [ , M2(#)],

Cl0,3 [ , * % *], Cl2,1 [ , M2(5) % M2(5)]

The natural choice is Cl3,0 [ , M2(#)], the algebra of the three-dimensional

space. Such an algebra allows an immediate geometric interpretation for the
Pauli matrices:

Cl3,0

scalar 1

vectors a 1, s 2, s 3

bivectors s 2 s 1, s 2 s 3, s 3 s 1

trivector s 1 s 2 s 3

The Pauli algebra can be also represented by the complexified quaternionic

ring (De Leo and Rodrigues, 1997, 1998, n.d.):

*c

1

i (, i ), i _
(, ), _

i

In the following, we prefer to use the vectors
-

s P Cl3,0, in order to avoid

confusion in the identification of the standard (complex) imaginary unit i 5
! 2 1 by elements of the Pauli algebra. By identifying the complex imaginary
unit i 5 ! 2 1 by elements of Cl3,0, we must recognize two possibilities

i 5 ! 2 1 ® s 21 [ s 2 s 1 (bivector)

or

s 123 [ s 1 s 2 s 3 (volume element)

in fact

s 2
21 5 s 2

123 5 2 1

Consequently, w m 1 i h m can be respectively translated by

w m 1 s 21 h m or w m 1 s 123 h m m 5 1, . . . , 4

We propose in this paper a discussion concerning these two different

possibilities of translation for the standard complex Dirac theory. These
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two possibilities are strictly related to the use of two different ª complexº

geometries, namely

the s 123 and s 21 complex geometries

In our formalism the standard physical results are soon reproduced. The

possibility of choosing two different ª complexº geometries in performing

our translations will give an embarrassing situation: two different geometric
interpretations for the complex imaginary unit i 5 ! 2 1, namely

bivector or volume element

2. PROBABILITY AMPLITUDES AND COMPLEX GEOMETRY

The noncommutativity of the elements of Cl3,0 algebra requires that we

specify whether our Hilbert space VCl3,0 is to be performed by right or left
multiplication of vectors by scalars. We will follow the usual choice and

work with a linear vector space under right multiplication by scalars (De

Leo and Rodrigues, 1997; Finkelstein et al., 1962, 1963a,b; Adler, 1995;

Hestenes, 1975, 1979, 1990; Lounesto, 1986, 1993, 1994; Keller, 1993; Gull

et al., 1993). In quantum mechanics, probability amplitudes, rather than

probabilities, superimpose, so we must determine what kind of number system
can be used for the probability amplitudes !. We need a real modulus function

N(!) such that

Probability 5 [N(!)]2

The first four assumptions on the modulus function are basically technical

in nature:

N(0) 5 0

N(!) . 0 if ! Þ 0

N(r!) 5 ) r ) N(!), r real

N(!1 1 !2) # N(!1) 1 N(!2)

A final assymption about N(!) is physically motived by imposing the corre-
spondence principle in the following form: We require that in the absence

of quantum interference effects, probability amplitude superimposition should

reduce to probability superimposition. So we have an additional condition

on N(!):

N(!1!2) 5 N(!1)N(!2)

A remarkable theorem of Albert shows that the only algebras over the reals

admitting a modulus functions with the previous properties are the reals 5,
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the complex #, the (real) quaternions *, and the octonions 2. The previous

properties of the modulus function seem to constrain us to work with division
algebras (which are finite-dimensional algebras for which a Þ 0, b Þ 0
imply ab Þ 0), in fact

!1 Þ 0, !2 Þ 0

implies

N(!1!2) 5 N(!1)N(!2) Þ 0

which gives

!1!2 Þ 0

A simple example of non-division algebra is provided by the algebra Cl3,0

since

(1 1 s 3)(1 2 s 3) 5 0

guarantees that there are nonzero divisors of zero. So if the probability

amplitudes are assumed to be elements of Cl3,0, we cannot give a satisfactory

probability interpretation. Nevertheless, we know that probability amplitudes

are connected to inner products, thus we can overcome the above difficulty

by defining an appropriate scalar product.
We have four possibilities:

We can define a binary mapping ^ C ) F & of VCl3,0 3 VCl3,0 into the scalar(S)/

bivectorial(BV) part of Cl3,0; we recall that VCl3,0 represents the Hilbert space

with elements defined in the Pauli algebra,

^ C ) F & (S,BV ) 5 1 # d 3x C ² F 2 (S,BV )

Note that the algebra (1, s 21, s 23, s 31) is isomorphic to the quaternionic

algebra. Thus, we have the mapping

VCl3,0 3 VCl3,0 ® Cl0,2 , *

We can also adopt the more restrictive ª scalarº projection ^ C ) F & S:

VCl3,0 3 VCl3,0 ® Cl0,0 , 5

The last two possibilities are represented by the so-called ª complexº

geometries

^ C ) F & (1, s 21) and ^ C ) F & (1, s 123)
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In these case we define the following binary mappings:

VCl3,0 3 VCl3,0 ® Cli ® s 21
0,1 [ #(1, s 21)

VCl3,0 3 VCl3,0 ® Cli ® s 123
0,1 [ #(1, s 123)

In the standard definition of inner product we find the operation of transpose

conjugation, C ² . How can we translate the transpose conjugation into the

geometric algebra formalism?

The Clifford algebra Cl3,0 has three involutions similar to complex

conjugation. Take an arbitrary element

E 5 E0 1 E1 1 E2 1 E3 in Cl3,0

written as the sum of a scalar E0, a vector E1, a bivector E2, and a volume

element E3. We introduce the following involutions:

E x 5 E0 2 E1 1 E2 2 E3 grade involution

E * 5 E0 2 E1 2 E2 1 E3 conjugation

E ² 5 E0 1 E1 2 E2 2 E3 reversion

The grade involution is an automorphism

(Ea Eb)
x 5 E }

aE
x
b

while the reversion and the conjugation are antiautomorphisms, that is,

(Ea Eb)* 5 E *b E *a

(Ea Eb)
² 5 E

²
b E

²
a

E ² [ E x* [ E *x. We shall show that the reversion can be used to represent
the hermitian conjugation.

Let us analyze the products C x C , C * C , and C ² C , which involve the

three involutions defined within the Clifford algebra Cl3,0. We must consider

the two possibilities due to the identification of the complex imaginary unit

i 5 ! 2 1 by s 21 and s 123. Let us perform a real projection of these products,

( C x C )S 5 (i [ s 21) {[( q 1 1 s 21 h 1 1 s 23 w 2 1 s 13 h 2)

2 s 123( w 3 1 s 21 h 3 1 s 23 w 4 1 s 13 h 4)]

3 [( w 1 1 s 21 h 1 1 s 23 w 2 1 s 13 h 2)

1 s 123( w 3 1 s 21 h 3 1 s 23 w 4 1 s 13 h 4)]}S

5 w 2
1 2 w 2

2 1 w 2
3 2 w 2

4 2 h 2
1 2 h 2

2 2 h 2
3 2 h 2

4
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5 (i [ s 123) {[( w 1 2 s 21 w 2 1 s 23 w 3 1 s 13 w 4)

2 s 123( h 3 1 s 21 h 2 1 s 23 h 3 1 s 13 h 4)]

3 [( w 1 1 s 21 w 2 1 s 23 w 3 1 s 13 w 4)

1 s 123( h 1 1 s 21 h 2 1 s 23 h 3 1 s 13 h 4)]}S

5 w 2
1 2 w 2

2 2 w 2
3 2 w 2

4 1 h 2
1 2 h 2

2 2 h 2
3 2 h 2

4

( C * C )S 5 (i [ s 21) {[( w 1 2 s 21 h 1 2 s 23 w 2 2 s 13 h 2)

1 s 123( w 3 2 s 21 h 3 2 s 23 w 4 2 s 13 h 4)]

3 [( w 1 1 s 21 h 1 1 s 23 w 2 1 s 13 h 2)

1 s 123( w 3 1 s 21 h 3 1 s 23 w 4 1 s 13 h 4)]}S

5 w 2
1 1 w 2

2 2 w 2
3 2 w 2

4 1 h 2
1 1 h 2

2 2 h 2
3 2 h 2

4

5 (i [ s 123) {[( w 1 2 s 21 w 2 2 s 23 w 3 2 s 13 w 4)

1 s 123( h 1 2 s 21 h 2 2 s 23 h 3 2 s 13 h 4)]

3 [( w 1 1 s 21 w 2 1 s 23 w 3 1 s 13 w 4)

1 s 123( h 1 1 s 21 h 2 1 s 23 h 3 1 s 13 h 4)]}S

5 w 2
1 1 w 2

2 1 w 2
3 1 w 2

4 2 h 2
1 2 h 2

2 2 h 2
3 2 h 2

4

( C ² C )S 5 (i [ s 21) {[( w 1 2 s 21 h 1 2 s 23 w 2 2 s 13 h 2)

2 s 123( w 3 2 s 21 h 3 2 s 23 w 4 2 s 13 h 4)]

3 [( w 1 1 s 21 h 1 1 s 23 w 2 1 s 13 h 2)

1 s 123( w 3 1 s 21 h 3 1 s 23 w 4 1 s 13 h 4)]}S

5 w 2
1 1 w 2

2 1 w 2
3 1 w 2

4 1 h 2
1 1 h 2

2 1 h 2
3 1 h 2

4

5 (i [ s 123) {[( w 1 2 s 21 w 2 2 s 23 w 3 2 s 13 w 4)

2 s 123( h 1 2 s 21 h 2 2 s 23 h 3 2 s 13 h 4)]

3 [( w 1 1 s 21 w 2 1 s 23 w 3 1 s 13 w 4)

1 s 123( h 1 1 s 21 h 2 1 s 23 h 3 1 s 13 h 4)]}S

5 w 2
1 1 w 2

2 1 w 2
3 1 w 2

4 1 h 2
1 1 h 2

2 1 h 2
3 1 h 2

4
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The first conclusion should be the use of the involution ² and the

assumption of a ª realº geometry. Thus, we should translate

( c *1 c *1 c *1 c *1 ) 1
c 1

c 2

c 3

c 4 2 [ o
4

m 5 1

( w 2
m 1 h 2

m)

by

( C ² C )S

Nevertheless, this real projection of inner products gives an undesired orthog-

onality between 1, s 21, and s 123. We know that the complex imaginary unit,

i 5 ! 2 1, represents a phase in standard quantum mechanics; thus if we

wish to adopt the identifications

i 5 ! 2 1 ® s 21 or s 123

we must abandon the ª realº geometry. We have another possibility. Let us

rewrite C as follows:

C 5 h1 1 s 123 h2, h1,2 P *(1, s 21, s 23, s 31)

The full C ² C product is given by

C ² C 5 (h
²
1 2 s 123 h

²
2)(h1 1 s 123 h2) 5 ) h1 ) 2 1 ) h2 ) 2 1 s 123(h

²
1h2 2 h.c.)

and so

C ² C 5 real part 1 vectorial part

Consequently,

( C ² C )S [ ( C ² C )(1, s 21) s 21-complex geometry

( C ² C )S [ ( C ² C )(1, s 123) s 123-complex geometry

Now, (1, s 21) and (1, s 123) do not represent orthogonal states, and our spinor

C has four complex orthogonal states, the complex orthogonality degrees of

freedom needed to connect a general element of the Pauli algebra to the 4-

dimensional Dirac spinor

s 21-complex geometry: 1, s 1, s 23, s 123 orthogonal states

s 123-complex geometry: 1, s 21, s 23, s 31 orthogonal states

3. BARRED OPERATORS

We justify the choice of a complex geometry by noting that although

there is the possibility to define an anti-self-adjoint operator
-

- with all the
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properties of a translation operator, imposing a noncomplex geometry, there

is no corresponding self-adjoint operator with all the properties expected for

a momentum operator. We can overcome such a difficulty by using a complex
scalar product and defining as the appropriate momentum operator

s 21-complex geometry:
-

p [ 2
-

- ) s 21

s 123-complex geometry:
-

p [ 2 s 123

-
-

where 1 ) s 21 indicates the right action of the bivector s 21. For s 123, it is not

important to distinguish between left and right action because s 123 commutes

with all the elements in Cl3,0. Note that the choice
-

p [ 2 s 21

-
- still gives a

self-adjoint operator with the standard commutation relations with the coordi-

nates, but such an operator does not commute with the Hamiltonian, which

will, in general, be an element of Cl3,0. Obviously, in order to write equations
that are relativistically covariant, we must treat the space components and

time in the same way, hence we are obliged to modify the standard ª complexº

equations by the following substitutions:

s 21-complex geometry: i - m ® - m ) s 21

s 123-complex geometry: i - m ® s 123 - m

Let us now introduce the complex/linear barred operators. Due to the

noncommutative nature of the elements of Cl3,0, we must distinguish between
left and right actions of s 21, s 23, s 31. Explicitly, we write

1 ) s 21, 1 ) s 23, 1 ) s 31 (2)

to identify the right multiplication of s 21, s 23, s 31,

(1 ) s 21) C [ C s 21, (1 ) s 23) C [ C s 23, (1 ) s 31) C [ C s 31

Note that the right action of s 1, s 2, s 3 can be immediately obtained from

the operators in (2) by s 123 multiplication.

In rewriting the Dirac equation, we need to work with ª complexº linear
barred operators. Here, we must distinguish between s 21- and s 123-complex

geometry. In fact, by working with a s 123-complex geometry it is immediate

to prove that

1 ) s 21, 1 ) s 23, 1 ) s 31

represent s 123-complex/linear operators. In contrast, by working with a s 21-

complex geometry we have only one permitted right action, that is,

1 ) s 21
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which represents a s 21-complex/linear operator. Why this counting of parame-

ters? It is simple. In Cl3,0 we work with eight real parameters, but the most

general linear transformation which can be performed on an element of Cl3,0,
adopting a s 123-complex geometry, is

A 1 B ) s 21 1 C ) s 23 1 D ) s 31, A, B, C, D P Cl3,0

which contains 32 real parameters, the same number as M4(#). This explains

the possibility of a direct translation between 4 3 4 complex matrices and

the Pauli algebra with s 123-complex geometry

1
c 1

c 2

c 3

c 4 2 % C 5 c 1 1 s 21 c 2 1 s 23 c 3 1 s 31 c 4

M4(#) % A 1 B ) s 21 1 C ) s 23 1 D ) s 31

3.1. s 123-Complex Geometry and Dirac Equation

We have now all the tools to reproduce the Dirac equation within the

algebra Cl3,0. It is sufficient to translate the standard equation

i G m - m C 5 m C

by using the identification of i 5 ! 2 1 with s 123 and finding a representation

of the Dirac matrices G m by elements of the Pauli algebra. We observe that

the G m ’ s can be rewritten in terms of elements of Cl3,0, by adopting pseudosca-

lar and left/right action of bivectors. To reproduce the right anticommutation

relation which characterizes the Dirac algebra, we perform the following
identification:

-
G , ( s 23, s 31, s 12)

To satisfy the anticommutation relation between G 0 and
-

G , we introduce

right actions

G 0 , 1 ) s 32 and G 1,2,3 , 1 ) s 31

Finally, the hermiticity conditions give

G 0 [ s 123 ) s 32

G 1 [ s 123 s 23 ) s 31

G 2 [ s 123 s 31 ) s 31

G 3 [ s 123 s 12 ) s 31
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The Dirac equation reads

- t C s 23 1 s 23 - x C s 13 1 s 31 - y C s 13 1 s 12 - x C s 13 5 m C (3)

Let us multiply the previous equation by the barred operator s 123 ) s 23,

s 123 - t C s 23 s 23 1 s 123 s 23 - x C s 13 s 23 1 s 123 s 31 - y C s 13 s 23 1 s 123 s 12 - x C s 13

5 m s 123 C s 23

By observing that

s 2
23 5 2 1, s 13 s 23 5 s 21, s 123( s 23, s 13, s 12) 5 2 ( s 1, s 2, s 3)

we find

s 123 - t C 1 s 1 - x C s 21 1 s 2 - y C s 21 1 s 3 - x C s 21 5 m C s 1 (4)

which represents the Dirac equation in the Pauli algebra with s 123-complex

geometry. This equation is obtained by simple translation, so it reproduces

the standard physical contents. We are now ready to give the desired transla-

tion rules:

C [ 1
w 1 1 i h 1

w 1 1 i h 2

w 1 1 i h 3

w 1 1 i h 4 2 % ( w 1 1 s 123 h 1) 1 s 21( w 2 1 s 123 h 2)

1 s 23( w 3 1 s 123 h 3) 1 s 31( w 4 1 s 123 h 4)

F ² C % ( F ² C )(1, s 123)

To give the correspondence rules between 4 3 4 complex matrices and barred

operators, we need to list only the matrix representations for the following

barred operators:

1, s 21, s 23, s 123, 1 ) s 12, 1 ) s 23

All the other operators can be quickly obtained by suitable multiplications

of the previous ones. The translation of 1 and s 123 is very simple:

1 % 14 3 4 and s 123 % i14 3 4
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The remaining four operators are represented by

s 21 % 1
0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2 , 1 ) s 21 % 1
0 2 1 0 0

1 0 0 0

0 0 0 1

0 0 2 1 0 2
s 23 % 1

0 0 2 1 0

0 0 0 1

1 0 0 0

0 2 1 0 0 2 , 1 ) s 23 % 1
0 0 2 1 0

0 0 0 2 1

1 0 0 0

0 1 0 0 2
3.2. s 21-Complex Geometry and Dirac Equation

Let us now discuss the possibility to write down the Dirac equation

in the Pauli algebra with a s 21-complex geometry. At first glance a

problem appears. We do not have the needed parameters in the barred

operators to perform a translation. In fact, the most general s 21-complex/

linear operator is

A 1 B ) s 21, A, B P Cl3,0

and consequently we count only 16 real parameters. We have no hope to set

down the 32 real parameters characterizing a generic 4 3 4 complex matrix.

Nevertheless, we observe the possibility to perform the grade involution,

which represents a s 21-complex/linear operation

[ C ( a 1 s 21 b )]x 5 C x( a 1 s 21 b ), a , b P 5

Thanks to this involution we double our real parameters. Let us show the

desired translation rules:

C [ 1
w 1 1 i h 1

w 1 1 i h 2

w 1 1 i h 3

w 1 1 i h 4 2 % ( w 1 1 s 21 h 1) 1 s 23( w 2 1 s 21 h 2)

1 s 123( w 3 1 s 21 h 3) 1 s 123 s 23( w 4 1 s 21 h 4)

F ² C % ( F ² C )(1, s 21)



Complex Geometry and Dirac Equation 2427

To give the correspondence rules between 4 3 4 complex matrices and barred

operators, we need to list only the matrix representations for the following

barred operators:

1, s 21, s 23, s 123, 1 ) s 21

and give the matrix version of the grade involution. All the other operators
can be quickly obtained by suitable combinations of the previous operations.

The translation of 1 and 1 ) s 21 is soon obtained:

1 % 14 3 4 and 1 ) s 21 % i14 3 4

The remaining rules are

s 21 % i 1
1 0 0 0

0 2 1 0 0

0 0 1 0

0 0 0 2 1 2 , s 23 % 1
0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2 ,

s 123 % 1
0 0 1 0

0 0 0 1

2 1 0 0 0

0 2 1 0 0 2
and finally the grade involution is represented by the following matrix:

x-involution % 1
1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2
Let us examine how to translate the Dirac equation

i G m - m C 5 m C

by working with a s 21-complex geometry. First, we modify the previous

equation by multiplying it by G 0 on the left

i - t C 1 i G 0 -
G ?

-
- C 5 m G 0 C

We observe that [by using the standard representation (Itzykson and Zuber,

1985; Bjorken and Drell, 1964) for the Dirac matrices]

G 0 C [ 1
1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2 1
w 1 1 i h 1

w 2 1 i h 2

w 3 1 i h 3

w 4 1 i h 4 2
% ( w 1 1 s 21 h 1) 1 s 23( w 2 1 s 21 h 2)
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2 s 123( w 3 1 s 21 h 3) 2 s 123 s 23( w 4 1 s 21 h 4)

% [( w 1 1 s 21 h 1) 1 s 23( w 2 1 s 21 h 2)

1 s 123( w 3 1 s 21 h 3) 1 s 123 s 23( w 4 1 s 21 h 4)]
x

and

G 0 -
G % ( s 1, s 2, s 3), i14 3 4 % 1 ) s 21

Thus, the translated Dirac equation reads

- t C s 21 1 s 1 - x C s 21 1 s 2 - y C s 21 1 s 3 - z C s 21 5 m C x (5)

4. EQUIVALENCE OF COMPLEX GEOMETRIES

In the previous sections, we have performed two translated versions of

the Dirac equation. Explicitly,

s 123-complex geometry: ( s 123 - t 1 ¹ ) s 21) C 5 m C s 1 (6)

s 21-complex geometry: ( - t 1 ¹ ) C s 21 5 m C x (7)

where

¹ [ s 1 - x 1 s 2 - y 1 s 3 - z

We discuss in this section the possibility to relate the two equations obtained

by imposing different geometries. Let us start by taking the x-involution of

equation (6),

s 123 - t C x 1 ¹ C x s 21 5 m C x s 1 (8)

By working with equations (6) and (8) we can reobtain equation (7). To do

this, we introduce the idempotents

e 6 5 1±2 (1 6 s 3)

and give some relations which will be useful in the following:

[e 6 , s 21] 5 0, s 1e 6 5 e 7 s 1

and

s 123e 2 5 e 2 s 21, s 123e+ 5 2 e+ s 21 (9)
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Let us multiply equations (6) and (8) from the right respectively by e 2

and s 1e+,

s 123 - t C e 2 1 ¹ C e 2 s 21 5 m C e+ s 1

s 123 - t C x s 1e+ 2 ¹ C x s 1e+ s 21 5 m C xe+

By using the relations in (9), we can rewrite the previous equations as follows:

( - t 1 ¹ ) C e 2 s 21 5 m C e+ s 1 (10)

and

( - t 1 ¹ ) C x s 1e+ s 21 5 2 m C xe+ (11)

By taking the ª differenceº between these last two equations, we have

( - t 1 ¹ )[ C e 2 2 C x s 1e+] s 21 5 m[ C e+ s 1 1 C xe+]

By redefining

F [ C e 2 2 C x s 1e+ (12)

and noting that

F x 5 C xe+ 1 C s 1e 2 5 C xe+ 1 C e+ s 1

we find

( - t 1 ¹ ) F s 21 5 m F x (13)

as anticipated.

We conclude this section by discussing the phase transformations charac-

terizing our equations. It is immediate to show that the phase transformation

C ® C e s 123 a , a P 5

implies the following transformation on F :

F ® F e s 21 a

In fact,

F 8 5 C e s 123 a e 2 2 C xe 2 s 123 a s 1e+

5 C e 2 e s 21 a 2 C x s 1e+e
s 21 a

5 F e s 21 a

At this stage, there is no difference in using a s 123- or s 21-complex geometry.

So we have an equivalence between s 123- and s 21-complex geometry within
the Pauli algebra.
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5. CONCLUSION

The possibility of using Clifford algebra to describe standard quantum

mechanics receives a major boost with the adoption of a complex scalar

product (complex geometry). A second important step in this objective of

translation is achieved with the introduction of the so-called barred operators,
which make it possible to write down a few translation rules which allow

one to quickly reproduce in the Cl3,0 formalism the standard results of the

Dirac theory. All the relations can be manipulated without introducing a

matrix representation, greatly simplifying the algebra involved.

In this paper we worked with the Pauli algebra, but we wish to remark

that our considerations can be immediately generalized to the spacetime
algebra, which represents the natural language for relativistic quantum

mechanics.

In the standard literature, the imaginary unit scalar of quantum mechanics

is replaced by a bivector. We showed that another possibility is also available,

namely the identification of the imaginary unit scalar i 5 ! 2 1 with the
pseudoscalar g 0123 of the spacetime algebra ( s 123 in the Pauli algebra). These

two geometric interpretations reflect the two possible choices in defining a

complex geometry within the multivector formalism. At the free-particle

level, there is an equivalence in using these two complex scalar products.

We conclude by observing that a possible difference between the s 21-

and s 123-complex geometries could appear in the formulation of the Salam±
Weinberg model, where the electromagnetic group is obtained by symmetry

breaking from the Glashow group SU(2) 3 U(1). It appears natural to use

s 21, s 23, s 31, and 1 ) s 21

as generators of the electroweak group. In this case the right choice should

be the adoption of a s 21-complex geometry. After symmetry breaking the

remaining electromagnetic group will be identified by the left/right action of
the generator s 21. A complete discussion of the Salam±Weinberg model

within the multivector formalism will be given in a forthcoming paper (De

Leo et al., n.d.).
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